Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(7): eadl4628, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354247

RESUMO

Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.


Assuntos
Proteínas , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Proteínas/química , Espectrometria de Massas/métodos , beta-Galactosidase , Manejo de Espécimes/métodos
2.
Faraday Discuss ; 240(0): 67-80, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36065984

RESUMO

An increasing number of studies on biomolecular function indirectly combine mass spectrometry (MS) with imaging techniques such as cryo electron microscopy (cryo-EM). This approach allows information on the homogeneity, stoichiometry, shape, and interactions of native protein complexes to be obtained, complementary to high-resolution protein structures. We have recently demonstrated TEM sample preparation via native electrospray ion-beam deposition (ES-IBD) as a direct link between native MS and cryo-EM. This workflow forms a potential new route to the reliable preparation of homogeneous cryo-EM samples and a better understanding of the relation between native solution-phase and native-like gas-phase structures. However, many aspects of the workflow need to be understood and optimized to obtain performance comparable to that of state-of-the-art cryo-EM. Here, we expand on the previous discussion of key factors by probing the effects of substrate type and deposition energy. We present and discuss micrographs from native ES-IBD samples with amorphous carbon, graphene, and graphene oxide, as well as landing energies in the range between 2 and 150 eV per charge.


Assuntos
Doenças Inflamatórias Intestinais , Proteínas , Humanos , Microscopia Crioeletrônica/métodos , Manejo de Espécimes/métodos , Espectrometria de Massas , Íons
3.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947691

RESUMO

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Assuntos
Adenosina Trifosfatases , Montagem de Vírus , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Montagem de Vírus/genética , Proteínas Virais/genética , Proteínas Virais/química , Empacotamento do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , DNA Viral/genética , DNA Viral/química
4.
ACS Nano ; 16(9): 14443-14455, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36037396

RESUMO

Electrospray ion-beam deposition (ES-IBD) is a versatile tool to study the structure and reactivity of molecules from small metal clusters to large protein assemblies. It brings molecules gently into the gas phase, where they can be accurately manipulated and purified, followed by controlled deposition onto various substrates. In combination with imaging techniques, direct structural information on well-defined molecules can be obtained, which is essential to test and interpret results from indirect mass spectrometry techniques. To date, ion-beam deposition experiments are limited to a small number of custom instruments worldwide, and there are no commercial alternatives. Here we present a module that adds ion-beam deposition capabilities to a popular commercial MS platform (Thermo Scientific Q Exactive UHMR mass spectrometer). This combination significantly reduces the overhead associated with custom instruments, while benefiting from established high performance and reliability. We present current performance characteristics including beam intensity, landing-energy control, and deposition spot size for a broad range of molecules. In combination with atomic force microscopy (AFM) and transmission electron microscopy (TEM), we distinguish near-native from unfolded proteins and show retention of the native shape of protein assemblies after dehydration and deposition. Further, we use an enzymatic assay to quantify the activity of a noncovalent protein complex after deposition on a dry surface. Together, these results not only indicate a great potential of ES-IBD for applications in structural biology, but also outline the challenges that need to be solved for it to reach its full potential.


Assuntos
Doenças Inflamatórias Intestinais , Proteínas , Humanos , Íons , Espectrometria de Massas/métodos , Proteínas/química , Reprodutibilidade dos Testes
5.
RSC Adv ; 12(16): 9671-9680, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424940

RESUMO

Electrospray ionization mass spectrometry is increasingly applied to study the structures and interactions of membrane protein complexes. However, the charging mechanism is complicated by the presence of detergent micelles during ionization. Here, we show that the final charge of membrane proteins can be predicted by their molecular weight when released from the non-charge reducing saccharide detergents. Our data indicate that PEG detergents lower the charge depending on the number of detergent molecules in the surrounding micelle, whereas fos-choline detergents may additionally participate in ion-ion reactions after desolvation. The supercharging reagent sulfolane, on the other hand, has no discernible effect on the charge of detergent-free membrane proteins. Taking our observations into the context of protein-detergent interactions in the gas phase, we propose a charge equilibration model for the generation of native-like membrane protein ions. During ionization of the protein-detergent complex, the ESI charges are distributed between detergent and protein according to proton affinity of the detergent, number of detergent molecules, and surface area of the protein. Charge equilibration influenced by detergents determines the final charge state of membrane proteins. This process likely contributes to maintaining a native-like fold after detergent release and can be harnessed to stabilize particularly labile membrane protein complexes in the gas phase.

6.
PNAS Nexus ; 1(4): pgac153, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714824

RESUMO

Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.

7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911762

RESUMO

Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography's (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase-related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.


Assuntos
Holografia/métodos , Imunoglobulina G/química , Imagem Individual de Molécula/métodos , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
8.
Chem ; 7(1): 224-236, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33511302

RESUMO

Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers-in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation.

9.
Anal Chem ; 92(18): 12297-12303, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32660238

RESUMO

In structural biology, collision cross sections (CCSs) from ion mobility mass spectrometry (IM-MS) measurements are routinely compared to computationally or experimentally derived protein structures. Here, we investigate whether CCS data can inform about the shape of a protein in the absence of specific reference structures. Analysis of the proteins in the CCS database shows that protein complexes with low apparent densities are structurally more diverse than those with a high apparent density. Although assigning protein shapes purely on CCS data is not possible, we find that we can distinguish oblate- and prolate-shaped protein complexes by using the CCS, molecular weight, and oligomeric states to mine the Protein Data Bank (PDB) for potentially similar protein structures. Furthermore, comparing the CCS of a ferritin cage to the solution structures in the PDB reveals significant deviations caused by structural collapse in the gas phase. We then apply the strategy to an integral membrane protein by comparing the shapes of a prokaryotic and a eukaryotic sodium/proton antiporter homologue. We conclude that mining the PDB with IM-MS data is a time-effective way to derive low-resolution structural models.


Assuntos
Bases de Dados de Proteínas , Ferritinas/análise , Archaeoglobus fulgidus/química , Espectrometria de Mobilidade Iônica
10.
Nat Methods ; 17(5): 505-508, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371966

RESUMO

Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.


Assuntos
Lipídeos/análise , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Metaboloma , Proteoma/análise , Humanos , Ligantes
11.
Nat Protoc ; 15(5): 1690-1706, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238951

RESUMO

Recent applications of mass spectrometry (MS) to study membrane protein complexes are yielding valuable insights into the binding of lipids and their structural and functional roles. To date, most native MS experiments with membrane proteins are based on detergent solubilization. Many insights into the structure and function of membrane proteins have been obtained using detergents; however, these can promote local lipid rearrangement and can cause fluctuations in the oligomeric state of protein complexes. To overcome these problems, we developed a method that does not use detergents or other chemicals. Here we report a detailed protocol that enables direct ejection of protein complexes from membranes for analysis by native MS. Briefly, lipid vesicles are prepared directly from membranes of different sources and subjected to sonication pulses. The resulting destabilized vesicles are concentrated, introduced into a mass spectrometer and ionized. The mass of the observed protein complexes is determined and this information, in conjunction with 'omics'-based strategies, is used to determine subunit stoichiometry as well as cofactor and lipid binding. Within this protocol, we expand the applications of the method to include peripheral membrane proteins of the S-layer and amyloid protein export machineries overexpressed in membranes from which the most abundant components have been removed. The described experimental procedure takes approximately 3 d from preparation to MS. The time required for data analysis depends on the complexity of the protein assemblies embedded in the membrane under investigation.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Vesículas Citoplasmáticas , Sonicação
12.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156826

RESUMO

Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria.IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo
13.
Nat Commun ; 11(1): 564, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992701

RESUMO

Detergents enable the purification of membrane proteins and are indispensable reagents in structural biology. Even though a large variety of detergents have been developed in the last century, the challenge remains to identify guidelines that allow fine-tuning of detergents for individual applications in membrane protein research. Addressing this challenge, here we introduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS) reveals that the modular OGD architecture offers the ability to control protein purification and to preserve interactions with native membrane lipids during purification. In addition to a broad range of bacterial membrane proteins, OGDs also enable the purification and analysis of a functional G-protein coupled receptor (GPCR). Moreover, given the modular design of these detergents, we anticipate fine-tuning of their properties for specific applications in structural biology. Seen from a broader perspective, this represents a significant advance for the investigation of membrane proteins and their interactions with lipids.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Detergentes/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Espectrometria de Massas , Lipídeos de Membrana , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Redobramento de Proteína , Solubilidade
14.
Angew Chem Int Ed Engl ; 59(36): 15560-15564, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462887

RESUMO

The immune scavenger protein DC-SIGN interacts with glycosylated proteins and has a putative role in facilitating viral infection. How these recognition events take place with different viruses is not clear and the effects of glycosylation on the folding and stability of DC-SIGN have not been reported. Herein, we report the development and application of a mass-spectrometry-based approach to both uncover and characterise the effects of O-glycans on the stability of DC-SIGN. We first quantify the Core 1 and 2 O-glycan structures on the carbohydrate recognition and extracellular domains of the protein using sequential exoglycosidase sequencing. Using ion mobility mass spectrometry, we show how specific O-glycans, and/or single monosaccharide substitutions, alter both the overall collision cross section and the gas-phase stability of the DC-SIGN isoforms. We find that rather than the mass or length of glycoprotein modifications, the stability of DC-SIGN is better correlated with the number of glycosylation sites.


Assuntos
Moléculas de Adesão Celular/química , Lectinas Tipo C/química , Polissacarídeos/química , Receptores de Superfície Celular/química , Moléculas de Adesão Celular/análise , Glicosilação , Células HEK293 , Humanos , Espectrometria de Mobilidade Iônica/métodos , Lectinas Tipo C/análise , Espectrometria de Massas/métodos , Polissacarídeos/análise , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Estabilidade Proteica , Receptores de Superfície Celular/análise
15.
Angew Chem Int Ed Engl ; 59(9): 3523-3528, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31886601

RESUMO

Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Simulação de Dinâmica Molecular , Presenilinas/química , Presenilinas/metabolismo , Ligação Proteica
16.
ACS Cent Sci ; 5(8): 1310-1311, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482112
17.
Chem Commun (Camb) ; 55(76): 11342-11345, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31479092

RESUMO

Site-selective labelling of antibodies (Abs) can circumvent problems from heterogeneity of conventional conjugation. Here, we evaluate the industrially-applied chemoenzymatic 'Q-tag' strategy based on transglutaminase-mediated (TGase) amide-bond formation in the generation of 89Zr-radiolabelled antibody conjugates. We show that, despite previously suggested high regioselectivity of TGases, in the anti-Her2 Ab Herceptin™ more precise native MS indicates only 70-80% functionalization at the target site (Q298H), in competition with modification at other sites, such as Q3H critically close to the CDR1 region.


Assuntos
Anticorpos/química , Imunoconjugados/química , Radioisótopos/química , Zircônio/química , Amidas/química , Amidas/imunologia , Amidas/metabolismo , Anticorpos/imunologia , Imunoconjugados/imunologia , Estrutura Molecular , Transglutaminases/química , Transglutaminases/imunologia , Transglutaminases/metabolismo , Zircônio/imunologia
19.
J Biol Chem ; 294(30): 11637-11652, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31147442

RESUMO

JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Catálise , Cristalografia por Raios X , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Hidroxilação , Histona Desmetilases com o Domínio Jumonji/química , Cinética , Lisina/metabolismo , Conformação Proteica , Especificidade por Substrato
20.
Nat Struct Mol Biol ; 25(8): 743, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30018321

RESUMO

In the version of this article initially published, the PDB code associated with the study was given as 6F2E but should have been 6F2D in Table 1 and the data availability statement. The error has been corrected in the HTML and PDF versions of the article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...